

La fonctionnalisation de surface pour le contrôle de la synthèse et des propriétés de nano-objets inorganiques

Olivier Durupthy

Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574

UPMC, Collège de France, 11 place Marcellin Berthelot, Paris France

http://www.labos.upmc.fr/lcmcp/

Plan de la conférence

- Synthèses sol-gel de nanoparticules d'oxyde métallique (ou hydroxyde) à partir du sel correspondant en solution aqueuse
- Une approche prédictive de l'évolution de la taille et de la forme de différentes nanoparticules d'oxydes métalliques avec le pH et l'ajout d'additifs organiques.
- Un exemple de conséquence du contrôle morphologique sur les propriétés des nanoparticules d'oxyde de titane : la photocatalyse
- Un outil expérimental de l'étude en solution des échanges de ligands entre nanoparticules inorganiques et la solution : La RMN DOSY

Des travaux réalisés à l'UPMC :

Pr. Clément Sanchez, chaire de matériaux hybrides, Collège de France Laboratoire de chimie de la Matière Condensée de Paris

Equipe Matériaux hybrides et nanomatériaux

Diminuer la taille pour :

- créer un effet de confinement (Quantum dots CdSe)
- modifier la cohésion des atomes du solide (nanoparticules d'or)
- exacerber un effet de lié à la surface (catalyse ou photocatalyse)

Formation de nanoparticules d'oxyde métallique en solution

Polymérisation Inorganique

Synthèse Sol-Gel aqueuse

Précurseurs : sels métalliques (NiCl₂, Fe(NO₃)₃, TiCl₄,....) ou des complexes solubles dans l'eau

complexe aqua $[M(OH_2)_N]^{z+}$ ou assimilé $[ML_x(OH_2)_{N-x}]^{z'+}$

Hydrolyses : alcalinisation (ou acidification si complexe oxo initial)

 $[M(OH_2)_N]^{z+} + h OH^- \longrightarrow [M(OH)_h (OH_2)_{N-h}]^{(z-h)+} + h H_2O$

Condensation : *Réaction d'olation* avec formation de pont hydroxo

 $M-OH + H_2O-M \longrightarrow M-OH-M + H_2O$

Hydroxyde Métallique

Réaction d'oxolation avec formation de pont oxo

 $M-OH + HO-M \longrightarrow M-O-M + H_2O$

Formation de nanoparticules d'oxyde métallique en solution

Formation de nanoparticules d'oxyde métallique en solution

Démonstration expérimentale de la relation pH-taille de NP

Taille / I / pH_{synth} : TiO₂ anatase

TiO₂ Anatase : TiCl₄ 0,07 M, NaCl, pH fixé, 1 semaine à 60°C

Taille des particules ajustable entre 5 and 10.5 nm

A. Pottier et al., J. Mater. Chem., 2003, 13, 877

Démonstration expérimentale de la relation pH-taille de NP

Taille des particules ajustable entre 2 and 12 nm

L. Vayssière et al., J. of Colloid Interface Sci., 1998, 205, 205

Corrélation taille des particules – charge de surface

Approche thermodynamique de la précipitation

$$\Delta \mathbf{G}^{\circ} = \Delta \mathbf{G}^{\circ}_{\text{bulk}} + \Delta \mathbf{G}^{\circ}_{\text{surface}} + \Delta \mathbf{G}^{\circ}_{\text{Mélange}}$$

$$\mathbf{V}_{o}(\mathbf{C}_{o}-\mathbf{C}_{s}) \Delta \mathbf{G}^{\circ}_{f} \qquad \mathbf{Y}\mathbf{A} \qquad -\mathbf{RT}[\mathbf{Ln}(\mathbf{N}_{w}/\mathbf{n}_{p})+1]$$

$$\operatorname{avec} A = 4\pi \left(\frac{3V_{0}\bar{v}}{4\pi N_{A}}\right) n_{p}^{1/3} (C_{0}-C_{s})^{2/3} N_{A}$$

Le pH influe sur la taille des particules via n_p , C_s et γ

Bulk = solide massif

Approche thermodynamique de la précipitation

n_p(pH) et C_s(pH) doivent être calculés car : r = $\sqrt[3]{\frac{V_0 (C_0 - C_s)\bar{v}}{n_p (4/3)\pi N_A}}$

 $\begin{array}{c} \bullet \\ \mathbf{C}_{s}(\mathbf{pH}) \text{ tiré de la littérature} \\ \bullet \\ \mathbf{n}_{p}(\mathbf{pH}) ? \end{array}$

dh

Condition d'équilibre : $d(\Delta G^{\circ}) = 0 = d(\Delta G^{\circ}_{bulk}) + d(\Delta G^{\circ}_{surface}) + d(\Delta G^{\circ}_{Mix})$

$$\frac{\mathrm{d}n_{p}}{\mathrm{d}n_{p}} = \frac{\left[-V_{0}\Delta G^{0} \operatorname{form} -\frac{8}{3}\gamma(h)N_{A}\pi\beta^{2}n_{p}^{1/3}(C_{0}-C_{s}(h))^{-1/3}\right] \frac{\partial C_{s}}{\partial h}}{(C_{0}-C_{s}(h))^{2/3}} + \left[4N_{A}\pi\beta^{2}n_{p}^{1/3}(C_{0}-C_{s}(h))^{2/3}\right] \frac{\partial \gamma}{\partial h}}{(C_{0}-C_{s}(h))^{2/3}}$$

$$\frac{4}{3}\gamma(h)N_{A}\pi\beta^{2}n_{p}^{-2/3}(C_{0}-C_{s}(h))^{2/3}-RT\ln(Nw/n_{p})$$
avec $\beta = 3\sqrt{\frac{3V_{0}v}{4\pi N_{A}}}$

Loi de Gibbs : $d\gamma = -\Sigma \Gamma_i d\mu_i$

 Γ_i est la densité d'adsorption de i

- μ_i potentiel chimique i
- i peut être H⁺ ou un autre adsorbat

Comment décrire/prédire l'acidité de surface

Propriétés acide-base des atomes d'oxygène sous coordinés

 n_{b} = nombre de voisin en bulk

Comment décrire/prédire l'acidité de surface

Le modèle Multi-SIte Complexation , MUSIC²

T. Hiemstra et al., J. Colloid Interface Sci. 184, 680 (1996)

K_{protonation} = f (structure du solide, surface hydratée)

 $M_{n}O^{(nv-2)} + H^{+}_{solv} \implies M_{n}OH^{(nv-1)} \quad K_{n,1}$ $M_{n}OH^{(nv-1)} + H^{+}_{solv} \implies M_{n}OH_{2}^{nv} \quad K_{n,2}$

Valence de liaison effective

Brown et Altermatt, Acta Cryst. B41, 244 (1985)

н

 $S_{Me} = exp[(r_0 - r)/B]$ r : distance M - O

 r_0 (tabulé) , B=0,37 Å

 $-\text{Log } K_{n,x} = -A \, \delta(O)$ $\delta = -2 + \Sigma S_i$

Solvatation des groupements de surface : liaisons H

$$\Sigma S_j = \Sigma_i S_{Me} + p S_H + m(1 - S_H)$$

OH μ₁ p+m = 2

OH
$$\mu_2$$
 p+m = 1 ou 2 S_H = 0,8

OH μ_1 p+m = 1

$$H^{O}, 0,2 \\ H^{O}, 0,2 \\ H^{O}, 0,2 \\ 0,2 \\ M M M$$

Charge du proton partagée 80% O-H, 20% liaison H

-Ln $K_{n,x} = -A(\Sigma S_j - 2)$ A = 19,8

Comment décrire/prédire l'acidité de surface

Le modèle Multi-SIte Complexation , MUSIC²

Exemple : Surface de magnétite 111_{Oh} on a 2 sites: μ_2 et μ_3

Estimation correcte de la charge de surface du PCN

Approche thermodynamique de la précipitation

 γ décroît quand σ augmente \rightarrow Plus petites particules quand le pH s'éloigne du PCN

J.P.Jolivet et al., J. Mater. Chem., 2004, 14, 3281

Cas d'un oxy(hydroxy)de anisotrope : la boehmite γ-AlOOH

P. Euzen et al., Handbook of Porous Materials, Ed. F. Schüth, Wiley-VCH, 2002, p. 1591 J.P.Jolivet et al., J. Mater. Chem., 2004, 14, 3281 D. Chiche et al. J. Phys. Chem. C 2008, 112, 8524.

Cas d'un oxy(hydroxy)de anisotrope: la boehmite γ-AlOOH

- Calcul *ab-initio* d'une valeur référence γ₀
- Minimisation $de\Delta G^{\circ}_{surf} = \Sigma_i \gamma_i A_i$

 Calcul des morphologies par construction de Gibbs-Wulf

Morphologies expérimentales et théoriques en bon accord

P.Raybaud et al., J Catal., 2001, 211, 1

Introduction de polyols pendant la synthèse de la boehmite (γ-AlOOH)

Diminution globale de la taille des nanoparticules

Influence de la stéréochimie du polyol

- Effet important de la conformation threo
 - Bonne corrélation entre surfaces spécifiques et adsorption de polyol

W. Van Bronswijk et al., Colloids Surf. A, 1999, 157, 85 J. Angyal et al., Aust. J. Chem., 1974, 27, 1447

Preuves de l'adsorption sélective de polyols : expériences

Loi de Gibbs : $d\gamma = -\Sigma \Gamma_i d\mu_i$

Adsorption compétitive des protons et des polyols

 $\frac{\gamma_{010}}{\gamma_{101}} \clubsuit \text{ avec l'adsorption}$

Approche calcul : description des surfaces et des modes d'adsorption

(101) Surface : μ_1 -OH, μ_2 -OH, $H_2O \Gamma_{(0K)} = 0.32 \text{ J.m}^{-2}$

Calculation in the frame work of DFT, GGA PW91 implemented in VASP code.

Surfaces stabilization enhanced by organic additive

Approche calcul : Corrections pour la calcul d'énergie interfaciale

VASP : Calcul d'énergie de cellule à 0 K, surfaces dans le vide, polyols en phase gaz → Corrections : T, P, état physique de l'eau, hydratation des polyols et des surfaces, perte de mobilité des espèces adsorbées ... Exp

Preuves de l'adsorption sélective de polyols : calculs

$\Gamma_{(\mathrm{T})} (\mathrm{mJ.m^{-2}})$		(010)	(101)	(100)	(001)
Pas d'adsorbat		336	315	367	628
Xylitol adsorbé		430	375	491	739
$\Gamma_{\rm lat}$ $\Gamma_{\rm 010}$	sans xylitol	1	0.94	1.09	1.87
	avec xylitol	1	0.87	1.14	1.72
	Exp. sans xylitol	1	2.1	/	/
	Exp. avec xylitol	1	1.8	/	/

- Adsorption thermodynamiquement défavorable
- adsorption moleculaire
- Prédiction possible de l'évolution morphologique
- Adsorption améliorée par effet de nid

Un bon matériau pour la photocatalyse :

A : génération d'excitons B : migration électrons trous C : piégeage en bulk/surface D : recombinaison

- 1. Un bon taux de conversion de photons
- 2. Une bonne bande interdite (largeur et position)
- 3. Une bonne mobilité des porteurs de charge (qualité cristalline)
- 4. Une bonne réactivité de surface des polluants

Surface dépendant

• Une variété de structures

• Faces exposées à l'échelle centimétrique

 $\{101\} > \% \{100\} \sim \% \{001\}$

http://www.museumwales.ac.uk/

Marches, défauts de surface

• Faces exposées à l'échelle nanométrique

• Bipyramides à base carrée

Bâtonnets

Additif organique

Additif organique

 H_2N HO NH₂ Ethylenediamine Triéthanolamine OH

Bipyramides : O. Durupthy, J. Bill, F. Aldinger, *Cryst. Growth Des.* 2007, 7, 2696-2704. Bâtonnets : T. Sugimoto, X. Zhou, A. Muramatsu, *J. Colloid Interface Sci.* 2003, 259, 53-61.

Introduction de dicarboxylates pendant la synthèse de dioxyde de titane (TiO₂)

• Faces exposées à l'échelle nanométrique

• grain de riz

Additif organique : Aucun

Synthèse en four micro-onde 2h à 170°C (solvant eau à pH = 6) • cubes

Grain de riz: F. Dufour, S. Cassaignon, O. Durupthy, C. Colbeau-Justin, C. Chanéac, *Eur. J. Inorg. Chem.* 2012, 2707. Cubes: T. Sugimoto, X. Zhou, A. Muramatsu, *J. Colloid Interface Sci.* 2003, 259, 53-61.

- Cas de la photocatalyse sur les cubes
- 0.2 g TiO₂ dans 100 mL RhB (A>2)
- 30 min. adsorption dans le noir
- 120 min. sous UV-A (365 nm)

	Grain de riz	Bipyramide	Bâtonnet	Cube	P25
Surface spé (m ² /g)	120	190	120	100	50
Adsorption (A_0/A_{-30})	0.89	0.88	0.86	0.81	0.90

- Destruction directe du système conjugué ou
- Mécanisme de N-dééthylation

• Le principe de la RMN DOSY: différencier ligand libre et lié

• La RMN DOSY: principe de l'expérience

Attenuation de l'intensité de l'écho (Stejskal et Tanner):

$$I = I_0 \exp\left(-D(\gamma \delta G)^2 \Delta'\right)$$

E.O. Stejskal, J.E. Tanner *J. Chem. Phys.* **1965**, *4*2, 288-292 Delsuc, M.A.; Malliavin, T.E. Anal. Chem. **1998**, *70*, 2146-2148

• Synthèse de nanoparticules d'or monodisperse pour l'étude par RMN DOSY

Suivi de l'échange de ligands sur des nanoparticules d'or

Conclusions

- La taille et la morphologie des nanoparticules de certains oxydes métalliques en solution aqueuse dépendent fortement de la physico-chimie de l'interface oxyde-solution.
- Un contrôle précis peut être ainsi obtenu soit en ajustant le pH du milieu réactionnel soit en choisissant judicieusement le 'ligand' complexant de surface.
- Le contrôle morphologique à l'échelle nanométrique peut fortement influer les propriétés des matériaux obtenus.
- Des techniques de caractérisation originales telles que la RMN DOSY sont nécessaires pour apprécier la qualité d'un échange de ligands sur des nanoparticules d'intérêt

Merci à

L'équipe Matériaux hybrides et nanomatériaux LCMCP

L. Vayssière, A. Pottier, C. Froidefond, D. Chiche, F. Dufour

IFP Energies Nouvelles : M. Digne, C. Chizallet, P. Raybaud, P. Euzin, H. Toulhoat

Remerciements spéciaux à F. Ribot et H. Ben Sassi pour la RMN DOSY