Apports de la modélisation moléculaire en chimie des surfaces et en catalyse hétérogène

Céline Chizallet

IFP Energies nouvelles-Lyon, Direction Catalyse et Séparation, Département Catalyse par les Métaux et les Solides Acido-Basiques Rond Point de l'échangeur de Solaize, BP3 69360 Solaize <u>celine.chizallet@ifpen.fr</u>

IFP Energies Nouvelles (EPIC) Direction Catalyse et Séparation

Objectifs de la direction Catalyse et Séparation: découverte, mise au point et développement de catalyseurs et adsorbants

Echelle de distance

Modélisation moléculaire : accéder à un modèle à l'échelle atomique

Comment modéliser une liaison chimique ?

Chimie quantique et calcul *ab initio*

Modéliser =

- Formaliser un problème en équation
 Résoudre l'équation
- 3. En déduire des propriétés du système

A l'échelle moléculaire, lorsque des liaisons se rompent et se forment:

1. L'équation : Schrödinger
$$H\Psi = \mathcal{E}\Psi$$
Image: Prix Nobel 1933Born-Oppenheimer \longrightarrow $H_{el}\Psi = \mathcal{E}_{el}\Psi$ $H_{el} = T_e + V_{ne} + V_{ee}$ \longrightarrow Difficulté induite par le terme V_{ee}

Chimie quantique et calcul *ab initio*

Modéliser =

- Formaliser un problème en équation
 Résoudre l'équation
- 3. En déduire des propriétés du système

2. Méthodes de résolution

Méthodes de la fonction d'onde

Fonction d'onde de forme choisie Hamiltonien exact

> Hartree, Hartree-Fock, Post Hartree-Fock

Approche de la Théorie de la fonctionnelle de la densité (DFT)

> P. Hohenberg W. Kohn Prix Nobel 1998

 $\mathsf{E}_0=\mathsf{E}(\rho_0)$

Hamiltonien : fonction de la fonctionnelle d'échange-corrélation → Approximations sur son expression

En chimie des surfaces, approche DFT largement représentée

Comment modéliser une surface ?

Somorjai et al. JACS 2009

Particules de platine, côté ~ 5 -10 nm

⇒ 5000 - 50 000 atomes

🔷 Impossible de simuler la particules complète en DFT

Méthode 1 : Calculs d'agrégats (clusters)

« Macromolécule »

ADF DMol Orca Jaguar ...

7

Comment modéliser une surface ?

Méthode 2 : Calculs périodiques

Effets longue portée (électrostatique…) Interactions latérales

© IFP

• •

Chimie quantique et calcul *ab initio*

Modéliser =

- Formaliser un problème en équation
 Résoudre l'équation
- 3. En déduire des propriétés du système

3. Les propriétés calculables en chimie des surfaces

Optimisation de géométrie : structure de surface et adsorption

Petitjean et al., JPCC 2010

Mode et énergie d'adsorption

Propriétés électroniques

Leydier et al., ChemComm 2012

Propriétés spectroscopiques

Chizallet et al., JACS 2007

Bocquet et al.,Nanoscale, 2012

© FP

Thermodynamique des surfaces

Energie d'adsorption: $\Delta_{ads}U = U_{surf/molec} - U_{surf} - U_{molec}$

Prise en compte des effets d'environnement : calcul d'une enthalpie libre de réaction

Molécule i - Potentiel chimique de l'espèce / en phase gaz:

 $\mu_i = \mu_i^0 + RT \ln\left(\frac{p_i}{p^0}\right)$

-Potentiel chimique des phases condensées approximé (effet de compensation ou approche statistique)

'hkl

Accès à la simulation de conditions opératoires réalistes à moindre coût de calcul

Chimie quantique et calcul *ab initio*

Modéliser =

- Formaliser un problème en équation
 Résoudre l'équation
- 3. En déduire des propriétés du système

3. Les propriétés calculables en chimie des surfaces

Dynamique

Pt/Al₂O₃, 1200 K

Réactivité, barrières d'activation

Joubert et al., JACS 2006

Echelles de temps de calcul

Loi de Moore

Transistors*

500 atomes / cellule:

optimisation de géométrie ~ 1-10 jours sur 32 processeurs (calculs parallèles)

~ 250 000 h / mois pour une petite équipe de recherche

Catalyseurs à base d'alumine gamma

14

Boehmite : orientation morphologique

γ -Al₂O₃ : modèle de la surface

Morphologie des particules de γ -Al₂O₃

3 faces cristallographiques majoritaires:

Digne et al. J. Catal. 211, 1-5 (2002)

Catalyseurs à base d'alumine gamma

17

Silice-alumine amorphe (ASA)

18

Interaction de Si(OH)₄ avec γ -Al₂O₃

Chizallet, C.; Raybaud, P. Angew. Chem. Int. Ed. 2009, 48, 2891

Formation d'une phase amorphe

Chizallet, C.; Raybaud, P. *Angew. Chem. Int. Ed.* 2009, 48, 2891

État de surface: impact de T et $P(H_2O)$

$$\Gamma_{(T)} = \Gamma_{dry(T)} + \frac{\theta_{OH}}{2} \Delta_{hyd} G_{(T)} = \Gamma_{(0K)} + \frac{\theta_{OH}}{2} \left[H^{\circ}_{(0K)} + TS^{\circ}_{(T)} - H^{\circ}_{(T)} - kTln \left(\frac{P}{P^{\circ}} \right) \right]$$

Acidité des PBS : adsorption de molecules sondes basiques

Chizallet, C.; Raybaud, P. *ChemPhysChem* **2010**, 11, 105 Trombetta, M. et al. *J. Catal.* **1998**, *179*, 581

Généralisation : transfert de proton de l'ASA vers la 2,6-lutidine

2 types de sites acides :

4 Leydier et al., J. Catal., 284 (2011) 215–229

Réaction de craquage par β -scission

Sur ASA, formation du carbocation beaucoup moins probable que dans une zéolithe: effet de confinement

Origine de l'acidité plus douce des ASA par rapport aux zéolithes

Réactivité favorisée sur Mordenite, intermédiaires dépendants du solide Zéolithes: effet de confinement électrostatique \rightarrow Stabilisation des espèces ioniques

Bilan - Travaux en cours et perspectives

* Proposition de structures de sites actifs pour un système amorphe

Pseudo-Bridging Silanols (PBS) Identification spectroscopique

* Compréhension de l'origine de l'acidité des ASA

Rôle dominant de la stabilisation de la base conjuguée Formation de nouvelles liaisons Si-O et Al-O sur la solide après transfert de H⁺ Champ électrostatique local

* Identification d'intermédiaires réactionnels alcoolates
 ≠ carbocations (zéolithes)

-Calcul des énergies (voire enthalpies libres) d'activation pour chacune des réactions

-Transposition des concepts à la transformation d'alcools

- Comparaison avec les propriétés de zéolithes post-traitées (steaming)

Catalyseurs à base d'alumine gamma

Agrégats métalliques de petite taille

Exemple : catalyseurs à base de Pt pour reformage catalytique

Pt₁₃ supporté: variations de morphologies

Morphologies dépendantes de l'état d'hydroxylation Surface déshydratée: mouillage support-particule

C. H. Hu et al., Journal of Catalysis (2010) 274, 99

Reconstruction dépendante des conditions opératoires

Mager-Maury C.; Bonnard G.; Chizallet C.; Sautet P.; Raybaud P. ChemCatChem 2011

Déshydrogénation de l'éthane en présence de dihydrogène

Raybaud et al., soumis

Impact de $P(H_2)$

Reaction steps towards dehydrogenation and hydrogenolysis

 $J = \frac{P(H_2)}{P(C_2H_6)}$

Limiter l'empoisonnement du catalyseur par l'alkylidyne et des précurseurs de coke : $7 P(H_2)$ Limiter $C_2H_6 + H_2 = 2CH_4 : \supseteq P(H_2)$

34

Bilan - Travaux en cours et perspectives

* Proposition de structures de sites actifs pour un système ultra-dispersé

Particules non symétriques, dépendance % état d'hydratation du support Effet de la taille des particules et de la présence de dopants sur le support *Mager-Maury et al. ACS Catalysis, 2, 1346 (2012)*

* Evolution du système en atmosphère réactionnelle

Reconstruction d'agrégats biplanaires en cuboctaèdres sous l'effet de H₂

Déshydrogénation de l'éthane : impact des conditions réactionnelles sur l'empoisonnement du catalyseur et sur l'occurence de réactions parasites

-Calcul des énergies (voire enthalpies libres) d'activation pour chacune des réactions

-Caractérisation plus fine des particules (XANES)

Comparaison avec les propriétés
 de systèmes multimétalliques (notamment PtSn)

Conclusions Générales : de la rationalisation à la prédiction

I- Compréhension structurale des catalyseurs

- Propositions de modèles de sites catalytiques actifs
- Confrontation des caractéristiques spectroscopiques expérimentales et calculées (IR, RMN, XPS, EXAFS, STM ...)

II- Détermination des mécanismes réactionnels

-Adsorption des réactifs -Identification d'intermédiaires

-Calcul de **barrières** d'activation et **chemins** réactionnels

-Confrontation avec les **activités et sélectivités** expérimentales

III- Vers le prédictif

-Proposition de **descripteurs** de la réactivité et sélectivité: corrélations structure – activité

-Proposition de **nouvelles phases actives**

Perspectives dans le domaine: comment améliorer les capacités de rationalisation et de prédiction ?

* Amélioration de la précision

Fonctionnelles, niveau de méthodologie

* Systèmes complexes : vers plus de réalisme

Taille des cellules Prise en compte explicite du solvant Exploration de l'espace des configurations etc. Développement méthodologiques + accroissement des moyens de calcul

* Vers la cinétique macroscopique

Statistique (KMC) Simulation multi-échelle : DFT \rightarrow Microcinétique \rightarrow Réacteur

Remerciements

Collaborateurs

P. Raybaud (IFPEN)
H. Toulhoat (IFPEN)
P. Sautet (ENS-Lyon)
D. Costa (ENSCP)
O. Durupthy (UPMC)

Doctorants

F. Leydier (2009-2012) C. Mager-Maury (2008-2011) M. Silaghi (2011-2014) A. Gorczyca (2011-2014)

Post-doctorant

C.H. Hu (2007-2008)

Stagiaires

G. Bonnard (2009) E. Petracovschi (2011)

Calculs

IFPEN IDRIS CINES CINECA